ON-LINE APPENDIX

Repeatability Metrics

Equations used to calculate all of the repeatability metrics are calculated according to Barnhart and Barboriak. ¹⁸ For the following equations, the total number of subjects used is n and the number of replications is K. In this study, n=33 subjects and K=2 visits. Additionally, \bar{Y}_i is the average over replication for subject i and \bar{Y}_i is the total mean over all observations.

Subject Means

Within subject means (WMS):

A1)
$$WMS = \sum_{i=1}^{n} \sum_{k=1}^{K} \frac{(Y_{ik} - \bar{Y}_i)^2}{n(K-1)}$$

Between subject means (BMS):

A2)
$$BMS = \sum_{i=1}^{n} \frac{(\bar{Y}_{i} - \bar{Y})^{2}}{n}$$

Standard Deviations

Within subject standard deviation (wSD):

A3)
$$wSD = \sqrt{WMS}$$

Between subject standard deviation (bSD):

$$bSD = \sqrt{\frac{(BMS - WMS)}{K}}$$

Total standard deviation (tSD):

$$tSD = \sqrt{\frac{BMS + WMS(K-1)}{K}}$$

Repeatability Coefficient

A6)
$$RC = 2.27(wSD)$$

Upper and Lower 95% Confidence Interval for RC (RC $_{\rm L}$ and RC $_{\rm U}$)

A7)
$$RC_U = \sqrt{\frac{n(K-1)}{\chi^2_{n(K-1)}(0.975)}}$$

A8)
$$RC_{L} = \sqrt{\frac{n(K-1)}{\chi_{n(K-1)}^{2}(0.025)}}$$

Within Subject Coefficient of Variation

$$wCV = \frac{wSD}{\bar{Y}}$$